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Imperfect homoclinic bifurcations
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Experimental observations of an almost symmetric electronic circuit show complicated sequences of bifur-
cations. These results are discussed in the light of a theory of imperfect global bifurcations. It is shown that
much of the dynamics observed in the circuit can be understood by reference to imperfect homoclinic bifur-
cations without constructing an explicit mathematical model of the system.
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I. INTRODUCTION

The role of symmetries in determining the behavior
nonlinear physical systems can be crucial. Reflection~or Z2)
symmetry is relevant to a wide range of experiments, an
such a system a pair of stable solutions may be created
supercritical pitchfork bifurcation as a parameter is vari
These new states break the original symmetry, but are s
metric images of each other. Of course, perfect symmetr
never achievable in any physical system. So, in practice,
bifurcation may become disconnected having one branch
varies monotonically with the parameter and a second
that arises by a saddle-node bifurcation. This is most ea
modeled by adding an imperfection term as a constant in
model normal form and this appears to work well in descr
ing the local bifurcation structure. However, a physical s
tem will typically contain many sources for this imperfectio
and some of them may be high dimensional in nature. Th
fore, it is reasonable to ask whether a model with a sin
imperfection term provides a good representation of the s
tem far from the bifurcation point. Specifically, we are inte
ested here in the effects of this local modeling on the glo
dynamics that result from homoclinic bifurcations.

Our investigation is concerned with a class of global
furcations involving homoclinic orbits, i.e., orbits that ten
to a stationary point of the model flow in both forward a
backward time. Typically, the existence of a homoclinic or
is not a persistent property of a differential equation, but th
occur on lines in two-parameter families~technically, they
are codimension-1 bifurcations!. In the absence of symmetry
the net effect of such bifurcations is to create or destro
periodic orbit, whose period tends to infinity at the bifurc
tion point. This may happen in one of two ways: one sided
two sided. In the one-sided case, the orbit approaches
bifurcation point from one side of the bifurcation point as
period tends to infinity. In the two-sided case, such as
Shil’nikov case@1#, the locus of the orbit in parameter spa
oscillates about the bifurcation value creating the so-ca
‘‘Shil’nikov wiggle’’ as the period of the orbit tends to infin
ity. Moreover, there are period-doubling and reverse peri
doubling bifurcations of the orbit together with more com
plicated homoclinic bifurcations. This sequence of events
been reported previously@2# in an experimental and theore
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ical study of a modified van der Pol oscillator, and in a wi
variety of other experiments including Taylor-Couette flow
@3,4#, optics@5,6#, chemical oscillators@7,8#, and liquid crys-
tal flows @9#.

In the presence of simple symmetries, homoclinic bif
cations may involve two or more homoclinic orbits. In th
simplest cases the net effect is to destroy a pair of perio
orbits, which are the images of each other under the sym
try and create a single symmetric branch of periodic orb
These symmetric periodic orbits cannot undergo peri
doubling. So in the two-sided case, the period-doubling a
reverse period-doubling bifurcations on branches of the s
metric orbit are replaced by an initial symmetry-breaking~or
reverse symmetry-breaking! bifurcation. The asymmetric or
bits created in this way may, of course, be involved
period-doubling bifurcations. This distinction will be usef
in the interpretation of the bifurcations observed below.

Whilst the effect of small symmetry-breaking terms o
the bifurcations of stationary solutions has a long history~the
imperfection theory of Golubitsky and Schaeffer@10–12#!
there appears to have been no systematic attempt to des
the equivalent modifications of global bifurcations~see
@13,14# for a special case!. Our aim here is to consider th
simplest possible case and to compare the predictions
the results of a complimentary experiment. Although we
not take the precise details of the symmetry-breaking te
into account, qualitative agreement with the experimental
sults is found.

We reconsider the experimental electronic oscillator@2#
that exhibits a variety of almost symmetric global bifurc
tions and show how many features observed in the exp
ments may be explained by reinterpreting some results
codimension-2 homoclinic bifurcations so as to obtain a g
eral imperfection theory for homoclinic bifurcations. The
results necessarily involve nonstationary solutions, and
are likely to be applicable and observable in many m
interesting situations.

The experiments were carried out using a van der
oscillator. The bifurcation structure of this system has be
investigated in detail previously@2# but with the implicit
assumption of symmetry. It is the aim of the present study
investigate the global dynamics of the circuit and relate
©2001 The American Physical Society08-1
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observations to modern ideas on gluing bifurcations wh
the mathematical abstraction of perfect symmetry is relax

II. EXPERIMENT I

A. The electronic oscillator

The experimental study was performed using a van
Pol oscillator circuit, the details of which are given in Heal
et al. @2#. It comprises an autonomousLCR oscillator with
two nonlinear conductances in the feedback circuit. Pre
variation of the two parameters that control the behavior
the system was provided by switchable decades resist
boxes. This means determination of the bifurcation struct
to a relative accuracy of better than 0.1% was possible.
two parameters are denoted bya1 ,b1 and they are nondi-
mensionalized forms of the resistancesR1 ,R2 that control
the nonlinear elements. Details of the nondimensionaliza
are given in Healeyet al. @2#.

The principle set of observations were made using an
cilloscope. Steady bifurcations were observed as change
the level of the dc output. On the other hand dynamical sta
were best monitored as Lissajous figures formed from a c
bination of signals measured over the nonlinear elements
this way, limit cycles, period-doubling sequences, chaos
were readily displayed. Time series were also recorded
stored on a computer via a 12-bitA/D for further processing.
This included phase portrait analysis using the method
delay coordinates.

The inductor used in the present circuit is 1.5269H co
pared with 1.78H used by Healeyet al. @2#. This causes a
shift of the bifurcation points relative to those previous
reported, though the bifurcation structure remains qual
tively the same. The imperfections in the circuit are tiny a
the resulting local bifurcation diagrams are very close
those we would expect from a perfect system. Although
symmetry-breaking term arises from a variety of sources,
will refer to them throughout as a single imperfection.

B. Bifurcation set

The stability diagram for the electronic circuit is shown
Fig. 1. The overall structure shows lines of steady and
namic bifurcations, all meeting at the top right hand corn
of the figure that is a codimension-2 point. The dynam
bifurcations~Hopf and homoclinic! are pairs of lines super
posed and separated by the imperfections in the circuit. T
effect is very small and cannot be resolved on the scale of
figure but, as we will show below, it has a significant effe
on the global dynamics.

In the parameter range of interest, a perfectly symme
system would have a trivial 0 V fixed point that would lo
stability to a pair of nonzero dc states at a supercritical pit
fork bifurcation. As expected, in the experiment we see t
this bifurcation is disconnected to form a continuously co
nected state and a separate solution branch that is termin
at its lower end by a saddle-node bifurcation denoted by
in Fig. 1. The stable nontrivial asymmetric dc states b
become time dependent via Hopf bifurcations; one on e
branch. The imperfection in the circuit is very small, so t
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loci of these bifurcations almost coincide and are mark
‘‘Hopf’’ in Fig. 1. The two asymmetric limit cycles that arise
at the Hopf bifurcations appear to glue together leading t
large symmetric periodic orbit. This transition is denoted
the line marked ‘‘Hom’’ in Fig. 1 and will be discussed i
detail below. This symmetric limit cycle undergoes differe
types of bifurcation including symmetry breaking and peri
doubling and may also become chaotic. Finally, within t
oscillatory regime forward and reverse period-doubling
quences have been observed and these can be related
Shil’nikov wiggle as shown by Healeyet al. @2#. The bound-
aries of this region are denoted byP2 in Fig. 1.

C. Imperfect gluing bifurcation

We first examine the influence of the imperfection on t
gluing bifurcation that occurs when the two asymmetric lim
cycles join without the presence of complicated dynami
We choseb1 sufficiently large (b1>0.59 approximately!
anda1 close tob1 so that the chaos that arises from perio
doubling sequences on a Shil’nikov wiggle is avoided a
the dynamics is almost planar. We present a ‘‘typical’’ set
results for the orbit structure of the oscillator in this regim
in Figs. 2 and 3 that were taken atb150.6000. Figure 2
shows the period of the various simple orbits observed a
function of the parametera1, and Fig. 3 shows the form o
the corresponding orbits—the two small asymmetric orb
are labeled by ‘‘1’’ and ‘‘0,’’ respectively, and the large am
plitude orbit is labeled by ‘‘10,’’ for reasons that will be
explained below.

If the electronic oscillator were symmetric then the dev
opment of the orbits shown in Fig. 3 fora150.6041 would
have a simple explanation in terms of gluing bifurcatio
@15#: two periodic orbits that are the symmetric image
each other approach a stationary point and are ‘‘glued
gether’’ to form single symmetric orbit with code ‘‘10.’’ At
the bifurcation the two smaller periodic orbits touch at t
stationary point, i.e., they are no longer periodic~their period
has diverged to infinity! and they form two homoclinic or-

FIG. 1. Experimental bifurcation set in thea1 ,b1 plane. SN
denotes the path of saddle-node bifurcations, ‘‘Hopf’’ the Hopf
furcations to simple oscillations, and ‘‘Hom’’ the gluing bifurca
tions. The parameter region denoted by ‘‘P2’’ is where forward and
reverse period doubling is observed on the asymmetric orbits.
8-2
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IMPERFECT HOMOCLINIC BIFURCATIONS PHYSICAL REVIEW E64 036208
bits, biasymptotic to the stationary point.
As is clear from Fig. 2, and as should be expected o

real physical system, the oscillator is not perfectly symm
ric. Hence it is not surprising that the pair of homoclin
orbits that exist at a single parameter value in the symme
system seem to occur at different parameter values in
oscillator. The results shown in Fig. 2 also suggest that th
is a third homoclinic bifurcation—the bifurcation that creat
the large amplitude ‘‘10’’ periodic orbit.

It can be seen in Fig. 2 that the period of both the sm
asymmetric orbits ‘‘1’’ and ‘‘0’’ increases asa1 increases and
they finally lose stability and jump to the ‘‘10’’ orbit ata1
'0.6045, i.e., where the graphs of the variation of period
almost vertical. Moreover, the ‘‘0’’ orbit remains stable fo
slightly higher values ofa1 than the ‘‘1’’ orbit, emphasizing
that the two orbits are not the images of each other under
symmetry. It should be noted that the ‘‘1’’ orbit results fro
a Hopf bifurcation on the monotonic branch of the disco
nected pitchfork bifurcation. Therefore it loses stability b

FIG. 2. Oscillation period of different periodic orbits atb1

50.6000 plotted as a function ofa1. ‘‘1’’ and ‘‘0’’ denote the orbits
on the asymmetric branches and ‘‘10’’, ‘‘01’’ are the glued orbits

FIG. 3. Phase portraits of coexisiting asymmetric (1,0) a
symmetric (10) periodic orbits ata150.6041 andb150.6000.
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fore the ‘‘0’’ orbit. This is precisely what is predicted by th
addition of a constant term to the normal form. The orb
shown in Fig. 3 all coexist ata150.6041 and are typica
examples of the limit cycles involved in this gluing bifurca
tion. The fact that they can all coexist explains why hyst
esis can be observed in the experiments.

There are three features in Fig. 2 that we will seek
explain theoretically in the following section: the break up
the gluing bifurcation, hysteresis, and also the extra bifur
tions evident at larger values ofa1. Before describing the
theory we shall look at this latter sequence of bifurcations
more detail.

D. Symmetry-breaking bifurcation of large periodic orbit

It is known that symmetric systems cannot under
period-doubling sequences directly@16# but must first break
their symmetry. Hence, we would expect the large symme
orbit formed by the gluing of the two asymmetric ones
undergo a symmetry-breaking bifurcation, as predicted
the symmetric Shil’nikov wiggle@17#. As expected, this bi-
furcation is disconnected in the experiment and has b
observed atb150.6000 witha1 increasing from 0.6059. The
bifurcation was detected by measuring the mean voltage
eraged over 150 periods of the oscillation and plotting this
a function ofa1. The resulting bifurcation diagram is show
in Fig. 4 where we see that it has the form of a disconnec
pitchfork. This diagram explains the creation of the or
labeled ‘‘01’’ in Fig. 2. Note that the original ‘‘10’’ orbit has
a larger period but smaller^V1& than the newly created ‘‘01’’
orbit. Hence, the branches in Figs. 2 and 4 are appare
reversed. Two typical asymmetric orbits on respect
branches are shown in Fig. 5 for (a1 ,b1)
5(0.6067,0.6000). It was observed that the period of ‘‘1
orbit ~cf Fig. 2! on the connected branch varied rapidly f
a1.0.6065 and then loses stability. However, the period
the ‘‘01’’ orbit is virtually constant over this range. At highe
a1 values the periods of both orbits decreased. Each o
underwent period-doubling sequences to chaos fora1 values

d

FIG. 4. Bifurcation diagram of symmetry-breaking bifurcatio
of periodic orbits atb150.6000. The mean ofV1 over 5000 data
points is plotted.
8-3
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PAUL GLENDINNING, JAN ABSHAGEN, AND TOM MULLIN PHYSICAL REVIEW E 64 036208
greater than the range displayed in Fig. 2. The extra com
cations of period doubling and instability are topics for f
ture research.

III. THEORY

It is natural to think of the bifurcations observed in th
system in terms of two parameters. One of these, saym, is
the parameter of the~fictional! symmetric system that has
gluing bifurcation as described in Sec. II C. The second
rameter, saye, is a measure of how far the oscillator is fro
being perfectly symmetric, i.e. it is some measure of imp
fection with e50 corresponding to the perfectly symmetr
system. Just as the standard imperfection theory for the
furcations of stationary points@12# allows one to describe th
effect of asymmetry in terms ofm ande, our aim here is to
give an analogous description for general global bifurcatio
We note that this is in the spirit of the work of Glendinnin
@14# and Cox@13# for the particular case of Lorenz-like b
furcations.

A. The basic picture

Suppose that (m,e)5(0,0) denotes the point in paramet
space at which there are two symmetrically related
moclinic orbits. Consider either one of these orbits. Since
existence of homoclinic orbits is codimension 1, there w
be a curve in parameter space through (0,0) on which
tems have a homoclinic orbit that is a continuation of t
given orbit. Thus, for typical two-parameter families of sy
tems, there will be two curves of homoclinic orbits in para
eter space, sayG0 andG1, which intersect at the origin an
that do not intersect the linee50 again locally. The curve
G0 ~respectively,G1) is the locus of a homoclinic bifurcation
that creates or destroys the periodic orbit with code 0~re-
spectively, 1!. The one-parameter families of nearly symm
ric systems such as the example considered in the prece
section would then correspond to some curve in this tw
parameter space that has, for example,e.0 and that passe
close to (m,e)5(0,0). Such a curve will intersect bothG0

FIG. 5. Phase space portrait of coexisiting ‘‘large’’ periodic o
bits 10 and 01 atb150.6000 anda150.6067.
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and G1, but at different parameter values, so there will
two simple homoclinic bifurcations at nearby parameter v
ues on such a path.

The intersection of the loci of two homoclinic bifurcation
~each to the same stationary point! is a codimension-2 phe
nomenon that has been studied by a number of auth
@15,18–24#. The most important feature that all these bifu
cations have in common is that at least two other curves
homoclinic orbits emanate from the intersection ofG0 and
G1, one ine.0 labeledG10, and the other ine,0 labeled
G01. The labeling describes the order~in time! that the orbit
passes through neighborhoods of the basic homoclinic or
These homoclinic orbits are precisely the bifurcations nee
to destroy or create~asymmetric! periodic orbits with code
‘‘10’’ or ‘‘01.’’ Thus a typical path close toe50 will inter-
sectG0 , G1 and one of the curvesG01 or G10. This explains
the third homoclinic bifurcation observed in Fig. 2. Rough
speaking, the difference between orbits created by pa
crossingG10 and those created by crossingG01 is the differ-
ence between the orbits shown in Fig. 5.

The details of the two-parameter bifurcation plane clo
to the intersection ofG0 andG1 depends upon the nature o
the stationary point, the configuration of the homoclinic o
bits and a measure of the amount of twisting of solutio
about these orbits. The nature of the stationary point is
termined by the eigenvalues of the Jacobian matrix of
flow that are closest to the imaginary axis. If, up to comp
conjugation, these arel1 andl2 with Rel1,0,Rel2 then
the saddle indexd defined by

d52Rel1 /Rel2 ~1!

plays an important role. The two-parameter space near
intersection ofG0 andG1 in the planar case is shown in Fig
6 (l1 andl2 are real!, where the symmetry is a point sym
metry about the stationary point and the direction of tim
may be chosen so thatd.1. Each simple homoclinic bifur-
cation creates a periodic orbit in the direction indicated
arrow on the bifurcation curve. The parameter plane is
vided into six regions by the curves of bifurcations, and t
periodic orbits~from the local theory! that exist in each re-

FIG. 6. The two parameter plane for the imperfect gluing bifu
cation in the planar case. A one-parameter family of~imperfect!
systemsS is indicated by a curve through the plane close toe50.
The arrows indicate the direction in which orbits are created.
8-4
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IMPERFECT HOMOCLINIC BIFURCATIONS PHYSICAL REVIEW E64 036208
gion are indicated by their codes. The bifurcations obser
on the one-parameter pathS in Fig. 6 are shown in Fig. 7
which is the more conventional representation.

B. Relationship with the experiment

The curves sketched in Fig. 7 are in reasonably go
agreement with the experimental ones in Fig. 2 except for
extra complications at larger parameter values describe
Sec. II D. Also the fact, mentioned at the end of Sec. II
that all three of the orbits labeled ‘‘0,’’ ‘‘1,’’ and ‘‘10’’ coexist
for some values ofa1. However, even these aspects can
incorporated into our picture of imperfect global bifurc
tions. For smaller values ofb1 Shil’nikov wiggles are ob-
served, suggesting thatd,1 ~and l1 is complex! in this
parameter regime. In this case, as earlier, there may
symmetry-breaking and reverse symmetry-breaking bifur
tions of the symmetric orbit~in the perfectly symmetric sys
tem! @17#. The bifurcations observed in Fig. 2 and describ
in more detail in Fig. 4 are not in the asymptotic region
applicability of the homoclinic theory~large period, close to
homoclinic bifurcation! and so we invoke an extra pair o
assumptions on the underlying symmetric system for
model: that there is a symmetry-breaking and reve
symmetry-breaking bifurcation on the symmetric orbit a
that d,1.

If d,1 then the curves of homoclinic bifurcations a
essentially as in Fig. 6 but the direction of the bifurcations
reversed~more precisely, the diagram is reflected about the
axis! and the orbits created are saddles~rather than stable, a
would be the case ifd.1). This now suggests the new in
terpretation of Fig. 2 that is shown in Fig. 8. The major ne
feature is that since the orbits are created in the oppo
direction to the case withd.1 in Fig. 6 and are unstable, th
points at which the orbits cannot be followed further (a1
50.6041 for the ‘‘10’’ orbit anda150.6025 for the ‘‘0’’ and
‘‘1’’ orbits in Fig. 2! are now assumed to be saddle-no
bifurcations. There are a number of possible interpretati
for the disconnected symmetry-breaking bifurcations, a
one of these is shown in Fig. 8, although we make no cla
that it is the most likely. Note that the new arrangement
the homoclinic bifurcations does provide a region of para
eters where the orbits ‘‘0,’’ ‘‘1,’’ and ‘‘10,’’ coexist and are
stable, as seen in the experiment.

The important feature of the analysis above is that t
assumptions about the underlying mathematical model

FIG. 7. Bifurcation diagram~period against parameter! on the
one-parameter pathS of Fig. 6.
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sufficient to explain the orbits observed in the experiment
is worth emphasizing that this can be donewithoutconstruct-
ing the model equations explicitly, simply by suggesting th
any model equation must have various dynamical feature

C. Other cases

In the literature, codimension-2 global bifurcations a
generally described withG0 andG1 ~the loci of the simple
homoclinic bifurcations! as the coordinate axes of the bifu
cation analysis. In this case the symmetric system may
assumed to lie on the diagonal of the parameter space.
however, important to bear in mind that in models of phy
cal systems the curvesG0 andG1 intersect with a very smal
angle of intersection, whereas the standard analysis de
the intersection to be at right angles. Provided the inters
tion is transversal the analysis holds, although it does m
that the true picture for the asymmetric perturbation is a v
skewed version of the standard pictures.

All the relevant types of bifurcation we have consider
have a basic feature in common. As the bifurcation para
eter m is varied, a~more or less complicated! sequence of
bifurcation is observed with the net effect that a pair of p
riodic orbits ~those we have labeled ‘‘0’’ and ‘‘1’’! is de-
stroyed, and a single large periodic orbit is created. The p
cise details of the bifurcations depend on the system, but
still possible to make a number of general statements.

1. The one-sided case

If the direction of time can be chosen so thatl2 is real
and d.1 @cf. Eq. ~1!# then the codimension-1 bifurcation
on G0 and G1 are one sided and fairly general stateme
about the bifurcations involved in the range of validity of th
rigorous argument: large period and parameters close to
intersection ofG0 andG1 are possible@22#. First, there are at
most two periodic orbits, and second, any periodic orbit h
a very particular description in terms of the symbols ‘‘0’’ an
‘‘1’’ introduced above. Technically, the sequences are ro
tion compatible sequences@22#, but in practice a simple con
sequence is that periodic orbits have codes of the form

01n101n201n301n401n5 . . . , ~2!

where for alli, niP$m,m11% for somem.0 ~or the same
with the roles of 0 and 1 exchanged!. Moreover, the limitr

FIG. 8. Bifurcation diagram~period against parameter! of the
modified global bifurcation as suggested by Fig. 2.
8-5
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of the number of 1s in the sequence to the length of th
sequence exists and is called the rotation number of the o
In one case~the so-called stable orientable Lorenz-like ca
see@21#!, there is an infinite set of bifurcations along a typ
cal path and at any one parameter after crossing the
bifurcation curve, there is at most one periodic orbit. Mo
over, the rotation number varies continuously along the
furcation path, implying the existence of parameter valu
with nonperiodic~but nonchaotic! attractors.

If l1 is complex then the range of bifurcations is mo
complicated and depends on the precise path taken thro
the parameter space. Here there are regions of coexisten
certain periodic orbits—those whose rotation numbersp1 /q1

and p2 /q2 are Farey neighbors, i.e.,up1q22q1p2u51—but
typical curves in parameter space do not intersect mos
these regions. A more complete list of the possibilities can
found in Refs.@17,18,21#.

All the bifurcations of the rigorous analysis involve on
sided global bifurcations, and there are no local bifurcatio
on the branches of each periodic orbit. If these occur i
necessary to appeal to effects outside the rigorous regio
validity of the mathematical results—this is made mu
easier by an understanding of the two-sided bifurcations

2. The two-sided case: Shil’nikov’s wiggle

The symmetric bifurcation diagram of the Shil’nikov ca
(l1 complex,l2 real andd,1) is given in Ref.@17#. The
locus of the pair of orbits~‘‘0’’ and ‘‘1’’ ! in parameter-period
space oscillates as the period increases to infinity, w
period-doubling and reverse period-doubling bifurcations
every other branch. The symmetric orbit oscillates in a si
lar way, but with symmetry-breaking bifurcations on eve
other branch. Breaking the symmetry of the system will ha
two effects—the global bifurcations that coincide in the sy
metric system will be split apart and the symmetry-break
bifurcations will typically become disconnected as describ
above. In the two-parameter diagram close to the intersec
of G0 andG1, curves of more complicated bifurcations (G01
andG10) oscillate rapidly and intersect each other~there are
infinitely many other curves of homoclinic bifurcations
complicate matters further!. For a typical asymmetric path
there will be a single intersection withG0 and G1, but po-
tentially several intersections withG10 and G01. The orbits
created in the bifurcations involvingG0 and G1 will lie on
the usual Shil’nikov wiggle in the parameter-period plane
observed experimentally~see Fig. 9!. The symmetric orbit,
‘‘10,’’ can also be followed experimentally~see Fig. 10!;
there are multiple intersections of the parameter path w
G10, i.e., extra bifurcations that create and destroy the or
labeled ‘‘10*.’’ Between the conjectured intersection of th
parameter path withG0 and G10 it is possible to observe a
stable orbit with code ‘‘100.’’ Such an orbit can be creat
from homoclinic orbits obtained from the gluing of the orb
‘‘10’’ and ‘‘0.’’ These bifurcations are expected due to th
intersection ofG0 andG10 in the two-parameter analysis~cf.
thed.1 case in@22#! that create extra curves of homoclin
orbits G010 andG100.
03620
it.
,

st
-
i-
s

gh
of

of
e

s
s
of

h
n
i-

e
-
g
d
on

s

h
ts

IV. EXPERIMENT II

The gluing process in the non-planar region of parame
space involves complicated orbits that evolve on
Shil’nikov wiggle. A pair of these wiggles are shown in Fi
9 where the period is plotted as a function ofa1 at fixed
b150.5317. Here the period of the orbit approaches infin
through a sequence of folds where alternate branches
unstable and indicated by dashed schematic lines in the
ure. The stable solutions undergo forward and reve
period-doubling sequences on the first two folds whereas
highest period orbits only exist over a tiny range of the p
rameter. In a perfectly symmetric system these two wigg
would overlap completely. The effect of the imperfection
the circuit is to displace the two curves from one anothe

A Shil’nikov wiggle has also been observed on the sy
metric orbit and the results are shown in Fig. 10. There
can see three levels of the wiggle with period-doubling
quences. The ‘‘10’’ orbits in this case were asymmetric b

FIG. 9. Coexisiting Shil’nikov wiggle atb50.5317. The branch
noted with@ # corresponds to the ‘‘1’’ and with~ ! to the ‘‘0’’ orbit
respectively.

FIG. 10. Shil’nikov wiggle and gluing process of the ‘‘10’’ orbi
at b50.5317. The period of the ‘‘10’’ orbits and the ‘‘100’’ orbit is
rescaled by 2 and 3, respectively.
8-6
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FIG. 11. Time series and phas
portraits of different dynamical
states involved in imperfect gluing
bifurcation atb50.5317.~a! Peri-
odic orbit ‘‘0’’ on asymmetric
branch ata150.561 19,~b! chaos
at a150.561 25,~c! period-3 orbit
‘‘100’’ at a150.561 36,~d! chaos
at a150.561 46, ~e! symmetric
periodic orbit ‘‘10’’ at a1

50.561 52.
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we were unable to find the mirror image pairs of solutions
this case. We were, however, able to observe them at sm
values ofb1. The gluing process takes place on the th
level with intervening sequences of chaos and a stable ‘‘1
orbit; as expected from the discussion at the end of S
III C. Note, we also observed the ‘‘10* ’’ that is an integral
part of the gluing process as discussed in Sec. III C abov
set of time series and phase portraits are displayed in Fig
The ‘‘0’’ orbit on the disconnected branch glues to the ‘‘10
large scale orbit via two chaotic phases with an intermed
period-3 ‘‘100’’ sequence.
03620
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V. CONCLUSION

Although symmetric equations are frequently used
model almost symmetric systems, we have shown tha
more careful examination of experiments can reveal featu
that do not appear in the symmetric models. In particular,
have focused here on global bifurcations that involve pe
odic states of the system, and we have shown how a num
of complicated bifurcation diagrams observed in the exp
ments can be interpreted by appealing to a theory of imp
fect homoclinic bifurcations.

A standard approach to the modeling of physical pheno
8-7
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ena is to construct a mathematical model of the experim
and use this to either predict or explain features of the
periment. This entails both the construction of the model a
the analysis of the model constructed. It is noticeable tha
the approach taken here we have appealed to properties
model without having to either construct or analyze th
model. We have simply argued that any mathematical mo
of the experiments must have certain features, and that t
features lead to certain conclusions by the application of g
bal bifurcation theory. Clearly, a more precise description
the symmetry-breaking terms would be needed to make
T

e

s.

e

an

D

th

03620
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-
d
in
f a

el
se
-
f
e

correspondence between the model, theory, and experim
results quantitative rather than qualitative. This is a wor
while project, but not one we have attempted here.

Bifurcation diagrams consistent with those of Sec.
have now been observed in more physically interesting s
tems. Abshagenet al. @25# has found bifurcation diagram
with a striking similarity to Fig. 6 in experimental data from
fluid flow. We believe that the approach taken here will fi
application in a broad variety of experiments in which sy
metry, or rather, almost symmetry, plays a role.
ci.,

ad.

ys.

rity

v.

R

@1# P. Glendinning,Stability, Instability and Chaos~Cambridge
University Press, Cambridge, 1994!.

@2# J. J. Healey, D. S. Broomhead, K. A. Cliffe, R. Jones, and
Mullin, Physica D48, 322 ~1991!.

@3# T. Mullin and T. J. Price, Nature~London! 340, 294 ~1989!.
@4# J. von Stamm, U. Gerdts, T. Buzug, and G. Pfister, Phys. R

E 54, 4938~1996!.
@5# E. Allaria, F. T. Arecchi, A. Di Garbo, and R. Meucci, Phy

Rev. Lett.86, 791 ~2001!.
@6# R. Herrero, R. Pons, J. Farjas, F. Pi, and G. Orriols, Phys. R

E 53, 5627~1996!.
@7# M. J. B. Hauser and L. F. Olsen, J. Chem. Soc., Faraday Tr

92, 2857~1996!.
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